Distributing Valves

General

Orenco’s Automatic Distributing Valve Assemblies are mechanically operated and sequentially redirect the pump’s flow to multiple zones or cells in a distribution field. Valve actuation is accomplished by a combination of pressure and flow. Automatic Distributing Valve Assemblies allow the use of smaller horsepower pumps on large sand filters and drainfields. For example, a large community drainfield requiring 300 gpm can use a six-line Valve Assembly to reduce the pump flow rate requirement to only 50 gpm.

Orenco only warrants Automatic Distributing Valves when used in conjunction with High-Head Effluent Pumps with Biotube® Pump Vaults to provide pressure and flow requirements, and to prevent debris from fouling valve operation. An inlet ball valve and a section of clear pipe and union for each outlet are provided for a complete assembly that is easy to maintain and monitor. Ideal valve location is at the high point in the system. Refer to Automatic Distributing Valve Assemblies (NTP-VA-1) for more information.

Standard Models

Nomenclature

V □ □ □ A
 Indicates assembly
 Number of active outlets

Model series:
44 = 4400 series (2-4 outlets)
46 = 4600 series (5-6 outlets)
64 = 6400 series (2-4 outlets)
66 = 6600 series (5-6 outlets)

Distributing valve

Specifications

Materials of Construction

All Fittings: Sch. 40 PVC per ASTM specification
Unions: Sch. 80 PVC per ASTM specification
Ball Valve: Sch. 40 PVC per ASTM specification
Clear Pipe: Sch. 40 PVC per ASTM specification
V4XXX Distributing Valves: High-strength noncorrosive ABS polymer and stainless steel
V6XXX Distributing Valves: High-strength noncorrosive ABS polymer, stainless steel, and die cast metal

Applications

Automatic Distributing Valve Assemblies are used to pressurize multiple zone distribution systems including textile filters, sand filters and drainfields.
Distributing Valves (continued)

<table>
<thead>
<tr>
<th>Model</th>
<th>Inlet Size (in.)</th>
<th>Outlets Size (in.)</th>
<th>Flow range (gpm)</th>
<th>Max Head (ft.)</th>
<th>Min. Enclosure</th>
</tr>
</thead>
<tbody>
<tr>
<td>V4402A</td>
<td>1.25</td>
<td>1.25</td>
<td>10 - 40</td>
<td>170</td>
<td>VB1217</td>
</tr>
<tr>
<td>V4403A</td>
<td>1.25</td>
<td>1.25</td>
<td>10 - 40</td>
<td>170</td>
<td>VB1217</td>
</tr>
<tr>
<td>V4404A</td>
<td>1.25</td>
<td>1.25</td>
<td>10 - 40</td>
<td>170</td>
<td>VB1217</td>
</tr>
<tr>
<td>V4605A</td>
<td>1.25</td>
<td>1.25</td>
<td>10 - 25</td>
<td>170</td>
<td>RR2418</td>
</tr>
<tr>
<td>V4606A</td>
<td>1.25</td>
<td>1.25</td>
<td>10 - 25</td>
<td>170</td>
<td>RR2418</td>
</tr>
<tr>
<td>V6402A</td>
<td>1.5</td>
<td>1.5</td>
<td>15 - 100</td>
<td>345</td>
<td>RR2418</td>
</tr>
<tr>
<td>V6403A</td>
<td>1.5</td>
<td>1.5</td>
<td>15 - 100</td>
<td>345</td>
<td>RR2418</td>
</tr>
<tr>
<td>V6404A</td>
<td>1.5</td>
<td>1.5</td>
<td>15 - 100</td>
<td>345</td>
<td>RR2418</td>
</tr>
<tr>
<td>V6605A</td>
<td>1.5</td>
<td>1.5</td>
<td>15 - 100</td>
<td>345</td>
<td>RR2418</td>
</tr>
<tr>
<td>V6606A</td>
<td>1.5</td>
<td>1.5</td>
<td>15 - 100</td>
<td>345</td>
<td>RR2418</td>
</tr>
</tbody>
</table>

Flow (gpm)

Head Loss Through Assembly (ft.)

![Graph showing flow versus head loss through assembly for different models.](image)